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Abstract. Systematic Evolution of Ligands by EXponential Enrich-
ment (SELEX) is a well established experimental procedure to identify
aptamers - synthetic single-stranded (ribo)nucleic molecules that bind
to a given molecular target. Recently, new sequencing technologies have
revolutionized the SELEX protocol by allowing for deep sequencing of
the selection pools after each cycle. The emergence of High Throughput
SELEX (HT-SELEX) has opened the field to new computational oppor-
tunities and challenges that are yet to be addressed. To aid the analysis of
the results of HT-SELEX and to advance the understanding of the selec-
tion process itself, we developed AptaCluster. This algorithm allows for
an efficient clustering of whole HT-SELEX aptamer pools; a task that
could not be accomplished with traditional clustering algorithms due
to the enormous size of such datasets. We performed HT-SELEX with
Interleukin 10 receptor alpha chain (IL-10RA) as the target molecule
and used AptaCluster to analyze the resulting sequences. AptaCluster
allowed for the first survey of the relationships between sequences in
different selection rounds and revealed previously not appreciated prop-
erties of the SELEX protocol. As the first tool of this kind, AptaCluster
enables novel ways to analyze and to optimize the HT-SELEX procedure.
Our AptaCluster algorithm is available as a very fast multiprocessor im-
plementation upon request.

1 Introduction

Aptamers are short, (∼20 to ∼100 nucleotides) synthetic, single-stranded (ribo)-
nucleic molecules that can be generated to bind specifically to molecular targets.
These binding targets can vary from small organic molecules [1], through pro-
teins and protein complexes [2], to viruses [3], and cells [4]. Aptamers have high
structural stability over a wide range of pH and temperatures making them ideal
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reagents for a broad spectrum of in-vitro, ex-vivo, and in-vivo applications [5].
A pegylated aptamer that inhibits binding of Vascular Endothelial Growth Fac-
tor (VEGF) to the VEGF receptor (Macugen R©) is approved for the treatment
of age-related macular degeneration [6]. Aptamers can also be used to monitor
small changes in the conformation of proteins, a property that can be utilized
for detecting the effect changes in the manufacturing process or during the de-
velopment of generic versions of protein-therapeutics [7].

Aptamers are experimentally identified through a procedure known as System-
atic Evolution of Ligands by EXponential Enrichment (SELEX) [8]. The tra-
ditional SELEX procedure iterates over five basic steps which together define
one selection cycle: incubation, binding, partitioning and washing, target-bound
elution, and amplification (Fig. 1). The process starts with a single-stranded
(ribo)nucleic acid sequence library of, typically, 1015 random sequences of fixed
length flanked by constant primer sites to aid amplification. Each random se-
quence permits the molecule to fold into a unique 3D shape or conformation.
At the start of each cycle, such a RNA/ssDNA pool is incubated with a tar-
get of interest. Due to the large number of unique sequences in the library, the
probability of at least some aptamer molecules to bind the target with speci-
ficity and affinity is quite high. At the end of each cycle, low affinity binders
are removed from the solution whereas bound aptamer molecules are eluted and
amplified, forming the input for the next round. Eventually, only molecules that
bind the target with high affinity remain. The aptamer molecules thus selected
for high affinity and specificity are then individually evaluated experimentally
and optimized for specific properties, such as size or stability, depending on the
intended application. The experimental optimization is often assisted by compu-
tational analysis. Such analysis includes finding minimum free energy secondary
structures and the identification of sequence motifs common to the final pool of
aptamers. Recently, Hoinka et al. developed AptaMotif, a computational method
for the identification of sequence-structure motifs in SELEX-derived aptamers
[9].

New sequencing technologies have revolutionized the SELEX protocol by allow-
ing deep/next-generation sequencing of entire aptamer pools ([10], Fig. 1). This
extension, the so-called HT-SELEX, holds the promise for greatly accelerating
aptamer discoveries and expanding their applications. For example, in the special
case where the target molecule is a transcription factor, a variant of HT-SELEX
designed for double-stranded DNA aptamers has been successfully used to un-
cover transcription factor binding motifs [11–13].

Traditionally, the SELEX process has been treated as a black box and only
a handful of binders elucidated in the last cycle were sequenced. In contrast, se-
quencing of earlier pools using HT-SELEX provides the opportunity to uncover
potential binders that might otherwise have been lost in later steps of the selec-
tion process. More importantly, by analyzing the relative changes of consecutive



Fig. 1. The SELEX procedure iterates over five basic steps incubation, binding, par-
titioning and washing, target-bound elution, and amplification. Traditionally, only the
binders elucidated in the last cycle were sampled and examined. The HT-SELEX in-
cludes sequencing of the final and intermediate selection pools.

selection rounds of properties such as sequence diversity and mutation rates, the
method provides an unprecedented opportunity to gain deeper insights into the
selection process per se. Thus, HT-SELEX coupled with computational assess-
ment of the relation between sequences has the potential to trace the dynamics
of the selection process and the rational selection of aptamers with desired prop-
erties making the SELEX process more rapid as well as more efficient.

Despite the success of HT-SELEX for drug design, efficient computational tools
that exploit and encompass data from all sequenced rounds, therefore elucidat-
ing the selection process from the initial pool to the final cycles, have yet to
be developed. Computational processing of HT-SELEX data is currently largely
based on simple counting of aptamer species in the final round of selection, fre-
quently discarding low-frequency species from the analysis, and choosing the
sequences that occur in high counts for further investigation [10]. In addition, a
small number of most frequent sequences from the final selection round might be
used as seeds for similarity searches. The underlying postulate of these methods
is that the best predictor of binding affinity is the frequency at which a particular
aptamer occurs in a pool. While these approaches might be suitable for candi-
date identification, they lack the ability of providing insight into the mechanisms
governing the selection process itself. Note that as the selection progresses, low
affinity binders (Fig. 2 high z-coordinate) are eliminated from the pool leaving



Fig. 2. A visualization of the aptamer landscape probed by the SELEX protocol. The
surface represents all possible aptamers of fixed length and the red dots represent
aptamers used in the initial pool. The distance on the surface is a conceptual projection
of sequence similarity. Multiple local minima correspond to groups of aptamers that
bind to the different areas of the targets surface or to the same region but are related
by structure rather than sequence similarity.

aptamers that sample local minima of binding energy. It is therefore expected
that clustering of aptamers in consecutive cycles should provide valuable infor-
mation about the selection process and should allow for the delineation of the
entire aptamer landscape probed by the SELEX protocol. Hence, our primary
objective is to cluster aptamers in all rounds of selection according to their se-
quence similarity. This task however could not be accomplished with previous
clustering algorithms due to the enormous size (2-50 Million sequences per cy-
cle) of the data set generated by high throughput sequencing, especially for early
rounds of selection which feature a high degree of unique sequences (≥ 90%). To
address this challenge, we developed a novel approach, AptaCluster, capable of
efficiently clustering entire aptamer pools.

Several sequence similarity measures are commonly found in clustering meth-
ods, of which the Hamming and Levenshtein (edit) distances are most promi-
nent. However, full-scale clustering approaches are computationally untrackable
for HT-SELEX data. Therefore we use the randomized dimensionality reduction
technique, known as locality-sensitive hashing (LSH) [14], to implicitly approx-
imate an upper bound to the edit distance for each sequence pair without the
need of exhaustive pairwise comparison. In the subsequent step, we eventually
compute precise sequence distances based on k-mer counting between pairs of



aptamers below this bound, while the remaining distances are not relevant and
might be arbitrarily assumed to be infinity.

We applied AptaCluster to analyze the results of the HT-SELEX experiment
that we preformed using Interleukin 10 receptor alpha chain (IL-10RA) as the
target molecule. IL-10 is considered to be a master regulator of immunity to
infection and is an important therapeutic molecular target [15]. We preformed 5
cycles of HT-SELEX with a 40nt variable region, sequencing the samples of pools
2-5. AptaCluster has enabled us to analyze the results of HT-SELEX, revealed
interesting properties of the selection landscape, and allowed for a better under-
standing of the HT-SELEX experiment. AptaCluster scales very well with data
size. While the sequenced pools in our IL-10RA HT-SELEX experiment varies
between 2 and 4.5 Million aptamers, we have applied AptaCluster to much larger
pools of more than 20 Million sequences in the context of whole-cell HT-SELEX
(data not shown) without loss of noticeable performance.

2 The AptaCluster Algorithm

Our approach is centered around a randomized dimensionality reduction tech-
nique, known as locality-sensitive hashing (LSH) [14]. First, a compressed repre-
sentation of the data set is constructed by reducing the pool to non-redundant
species and their corresponding frequency counts. We then apply a user-defined
number of randomized locality-sensitive hash functions to the data set in order
to distinguish sequence pairs that are potentially similar from those that are,
with very high probability, not similar. Each function operates by selecting a
small number of nucleotide positions from each aptamer and treats the sub-
string, resulting from the concatenation of these bases, as input for the hashing
procedure. Hence, aptamers with highly similar primary structure are likely to
fall into the same group whereas dissimilar sequences rarely produce identical
hash values. In the third step, the actual clustering step, we compute precise se-
quence distances between aptamers of identical hash value, while the distances
between the aptamers never encountered in the same group are set to infinity.
To accelerate the clustering, AptaCluster relies on a similarity measure based on
k-mer counting. Thus the algorithm preforms three main steps outlined below.
Relevant implementation details and the parameters used throughout this study
can be found in the Methods section.

Dataset Compression Data compression is achieved by using a hash map in
which the keys correspond to the species in the pool and the values correspond
to their respective frequency counts which can be done in O(N) time. In the

following, let s = (si)
l
i=1 be an aptamer of of length l defined by the sequence of

nucleotides si over the alphabet Ω = {A,C,G, T} where the index i corresponds
to the ith position of the aptamer. Furthermore, we define S = {sj ∈ P ‖ sj 6=
sk ∀j, k ∈ [1, . . . , |S|] ∧

∑|S|
j=1m(sj) = N}, where m(sj) corresponds to the



frequency of si, as the keys of the hash map, i.e. the set of unique aptamers for
pool P .

Filtering using Locality Sensitive Hashing LSH is based on the idea that
data points that are close in high dimension, after applying a probabilistic di-
mensionality reduction and using the reduced representation as the input to a
hash function, are likely to obtain the same hash value and hence fall into the
same bucket [16].

AptaCluster exploits this property by treating each sequence sj ∈ S as an l-
dimensional vector and reducing this vector into d dimensions (d < l). This is
done by generating a set Id of d randomly sampled indices i ∈ [1, . . . , l] and, for
each sequence sj , only selecting those nucleotides si for which i ∈ Id as input for
the hashing procedure. Hence, the more similar the primary structure of a set of
aptamers, the higher the probability that they will produce the same mapping.
Similarly, the choice of d controls the minimal degree of similarity between the
members of each partition since these are guaranteed to differ in at most l − d
positions. In other words, our approach implicitly computes an upper bound to
the edit distance. We iteratively improve this upper bound by repeating this pro-
cedure a user defined number of times, each time using a different hash function.
With sufficient number of of iterations, if two sequences never fall into the same
bucket they are assumed to be dissimilar with very high probability. The itera-
tive computation of the upper bound is performed as follows. Let dklsh(s1, s2) be
the upper bound computed after the kth iteration and let Lk(s) be the value of
the kth hash function for sequence s. We assume that, by default, we have for
all pairs d0lsh(s1, s2) =∞. Then

dklsh(s1, s2) =

{
l − d Lk(s1) = Lk(s2)

dk−1lsh (s1, s2) Lk(s1) 6= Lk(s2)
(1)

Clearly, only the assignment in the first line needs to be executed. To define
Lk(s), for each iteration k we randomly select a mapping h from a family of
functions

F = {h : Nl → Nd ‖ h(I) = Id} (2)

where I = (1, . . . , l) represents the nucleotide positions of an aptamer of size l,
and apply the function

L = {Ωl → Ωd ‖ L(s) = (si) ∀ i ∈ Id} (3)

to each aptamer s, creating a sub-string ŝ comprised of the concatenation of
the nucleotides at the positions defined in Id. Finally, traditional hashing is
performed on the set Ŝ = {ŝi}, i = 1, . . . , |S|. Id = (i0, . . . , id) can be efficiently
computed as follows: Let i0 ∈ [1, l] be a randomly selected index of I and define
x ∈ [2, l − 1] as a random number co-prime to l. Then, the remaining positions
can be generated with

ij = (ij−1 + x) mod l, j = 1, . . . , d− 1 (4)



and
Id = (ij)

d−1
j=0 , ij < ij+1 ∀ j (5)

corresponds to the sequence of indices after sorting these in ascending order.
Using this scheme guarantees that each index in I is selected exactly once and
avoids scenarios in which only adjacent positions of the sequence are chosen.

Cluster Extraction Based on the assumption that high-frequency of a se-
quence in a selection pool is related to its selective advantage due to its binding
affinity, we build the clusters iteratively around these high frequency aptamers.
We repeatedly choose the highest frequency sequence s not assigned to any clus-
ter, making it a seed of the new cluster. We then we employ a k-mer based
distance function [17] to compute the distance of the selected seeds to all other
sequences for which the upper bound estimated with LSH was finite and include
it in the cluster if dkmer is smaller than a user defined cutoff. In particular,

dkmer(sx, sy) =

4k∑
i=1

∣∣∣∣ Xi

|sx| − k + 1
− Yi
|sy| − k + 1

∣∣∣∣2 (6)

where Xi and Yi denotes the number of times the i-th k-mer occurs in sequence
sx and sy respectively and |si| corresponds to the length of the aptamer. Since
we compare only sequences that are in the same bucket in at least one iteration,
this approach allows us to extract clusters in O(N ∗m ∗ k) where m denotes to
the maximum number of seed sequences in a bucket which is bounded by the
size of the largest bucket generated during LSH.

3 Results of application to HT-SELEX experiment for
IL-10RA

We performed 5 rounds of HT-SELEX experiment with Interleukin 10 receptor
alpha chain (IL-10RA) as the target molecule. Here, we summarize the insights
obtained using AptaCluster.

3.1 Validating Clustering Results

The main advantage of AptaCluster is that to cluster an aptamer pool it does
not need to compute the distances between all pairs of sequences but instead
uses locality-sensitive hashing to filter out pairs that do not need to be com-
pared. However, the filtering step is heuristic and its outcome might depend on
the number of LHS iterations and properties of the dataset. Therefore we started
by confirming that the filtering step produces correct results, i.e. that sequences
filtered out as not potentially similar are indeed remote from the seed sequences
in terms of exact distance. Since the dataset size prohibits an exhaustive compu-
tation of all distances, we used 400 aptamers (the 20 most frequent species from
the top 20 clusters) and computed their edit distances to all other aptamers.



We then computed the distribution of the distances to the members of the same
cluster to the distances to the rest of the aptamers. The former group sampled
the sequences whose distances to the reference sequences has been computed and
found to be below the clustering threshold. The latter group sampled two types
of sequences: the sequences whose distance to the reference sequence has been
computed but found to be above the threshold and the sequences filtered out
without computing the distance based on our locality sensitive hashing function.
The results for all selection cycles are summarized in Fig. 3 for a set of default
and relaxed parameters (see Parameters section). The results demonstrate that
no sequence that was filtered out using locality sensitive hashing is close to the
seed sequences of the clusters. In addition, it also demonstrates that SELEX de-
rived aptamer clusters are well separated. Indeed, relaxing the locality-sensitive
hashing based filtering and increasing clustering threshold did not change the
clustering results appreciatively (Fig. 3 (b)).

3.2 Distribution of Aptamers within Clusters

Next, we examined the distribution of aptamers within the clusters. Interestingly,
we found that the distribution of these frequencies was very skewed (Fig. 4).
Except for a handful of highly abundant aptamers, most of the species in a cluster
had low frequencies. Such extreme differences in frequencies is consistent with a
situation in which most of the cluster diversity can be attributed to mutations
caused by Polymerase errors. To test this hypothesis, we investigated whether
aptamers with a maximal count of 5 from the top 20 clusters in cycle 5 were also
present in the sequenced portion of the selection pool from cycle 2. Indeed, the
vast majority of these sequences (99% of singletons, 97% for frequency 5) where
absent in this pool (Supplementary Table 1). Note that the sequences introduced
by Polymerase errors can be subsequently selected and amplified providing an
important source of cluster’s diversity. However, due to the late introduction,
their frequency count might not correctly reflect their binding affinity.

3.3 Frequency Counts Versus Binding Affinity

It is often assumed that an aptamer sequence’s frequency in the pool later cycles
provides a good predictor of its binding affinity. Indeed this would be a reason-
able expectation under the assumption that the selection process is free of any
artifacts, all aptamers are present in the initial pool with the same frequency,
and there was no stochastic variability during the above mentioned partitioning.
However the realization that a large fraction of sequences in the final pool might
have been absent from the initial pool but introduced in a later stage made us
to reexamine this assumption. We measured disassociation constant Kd for 30
Aptamers including the most frequent ones. We found that cycle-to-cycle en-
richment of aptamer frequencies, i.e. their relative increase in multiplicity, from
cycle 4 to 5 is a better predictor of binding than the frequency in the final pool
(data not shown). Specifically, taking 125 Kd as a reasonable threshold between



Fig. 3. Distribution of the edit distances between aptamers belonging to a cluster
(red) and distances between cluster members and all non-cluster sequences (blue) for
selection rounds 2 to 5. Within each of the top 20 clusters, the 20 most frequent
aptamers where compared against all other cluster members as well as the remaining
aptamers of the pool. (a) Distributions using the defaults parameters of AptaCluster as
described in the Parameter section is shown in the top panel. (b) Relaxed parameters as
depicted in the bottom panel in which only 40% of the randomized region was sampled
during LSH.

binders and non-binders, sorting by cycle-to-cycle enrichment separates binders
form non-binders while sorting by frequency leaves these two groups randomly
mixed.

In addition to the emergence of new sequences, another source of dissonance
between aptamer frequency and its binding potential could also be the differ-
ences in their frequencies in the initial pools due to the stochastic nature of
partitioning the pool into groups to be used for storage/sequencing/next cycle.
Looking at cycle-to-cycle sequence enrichment instead of counts permits a res-
olution of this problem. However, other artifacts exist that can affect aptamer
frequencies as well. In particular, we also tested the Kd values for non IL-10RA
specific binding using binding to IgG as proxy for such non-specificity (data not
shown). We found for example that cluster with ID 3 has high frequency in cycle
5 but it is not IL-10RA specific.

4 Conclusions and Discussion

Given the great promise of the HT-SELEX approach and rapidly diminishing
costs of next generation sequencing, the usage of this method is likely to in-
crease rapidly. Therefore it is imperative that researchers are able to analyze
and correctly interpret HT-SELEX results. We have developed a new approach,



AptaCluster, that allows for clustering based on primary structure of pools of
aptamers sequenced using Hi-Seq technology.

Until now, a typical HT-SELEX analysis was reduced to counting the frequency
of each aptamer and using such counts as a predictor of binding affinity. However
our results indicate that such counting is actually not as good of a predictor as
it has been anticipated. Instead, a predictor that utilizes the dynamics of the
cycle-to-cycle enrichment holds greater promise.

Our results of applying AptaCluster to the outcome of the IL-10RA HT-SELEX
experiment revealed important properties of the resulting clusters. We found
the clusters to be well separated, and typically dominated by one or a few indi-
viduals. Relaxing the parameters to allow for larger intra-cluster distances did
not change the results significantly. Consequently, sequence profiles of individ-
ual clusters were dominated by one or a few of the most abundant sequences.
We have also implemented a procedure that enables the tracing of the clusters
over consecutive selection cycles and, consistently with the observation above,
we found that the clusters’ sequence profile did not change much during consec-
utive selection steps.

The distribution of frequency counts within clusters suggests that cluster di-
versity is, in a large part, a result of Polymerase errors. The emergence of such
Polymerase mutants creates an interesting opportunity to sample around local
minima. This is strengthened by the observation that the number of mutations
correlates with the frequency of the cluster seeds: the more frequent the seed, the
more frequent the mutants. How to design the dynamics of the selection process
to optimally utilize these emerging mutants is an open question. One possibility
is to replace the typical selection procedure where selection pressure increases in
each cycle by an approach that alternates between stronger and weaker selection.

AptaCluster provides a valuable tool which will help us and others to analyze and
to optimize the HT-SELEX procedure. It has enabled us to analyze the results of
HT-SELEX for IL-10 and allowed for a better understanding of the HT-SELEX
experiment. We expect that the properties of the clusters obtained with Apta-
Cluster will vary depending on the experimental details of HT-SELEX protocol
in use, the length of the variable region, error rate of Polymerase, and properties
of the target. Independently of this expected variability, AptaCluster can be used
as the first step towards understanding the aptamer binding landscape, and for
the identification of a broad spectrum of potential binders. We point out that
AptaCluster is not intended to elucidate complex, indel-containing motifs but
rather to operate on sequences of equal length. It is designed to serve as a pre-
processing step for approaches to uncover sequence-structure motifs such as the
planned extension of our AptaMotif algorithm to high throughput sequencing
data [9].



5 Materials and Methods

5.1 Dataset Description

We applied 4 rounds of selection and cDNA generated from round 5 bound frac-
tions as well as RNA recovered from bound fractions at rounds 2, 3 and 4 was am-
plified and sequenced using Illuminas HiSeq 2500 device with 100-cycle paired-
end sequencing protocol (see HT-SELEX Experiment section for the experimen-
tal protocol). Aptamers were extracted by aligning the transcribed, inverted
sequence of the reverse run to the corresponding forward lane and only retaining
those sequences with less then 5 mismatches between the actual primers/tags
and the identified primer region. Furthermore we restricted the number of al-
lowed mismatches between the sequences of the forward and reverse lane in the
randomized region to four. Mismatches in the randomized region were corrected
by choosing the nucleotide with higher Illumina quality score. For the entire ex-
periment, a total of 12895554 sequences where retrieved of which 4621438 species
belonged to round 5, 1923823 to round 4, 2181720 to round 3, and 4168573 to
round 2. Out of these respectively 617220, 1021668, 1902904, and 3857210 were
unique.

5.2 Implementation Details

AptaCluster is currently available as a multi-threaded implementation in C++
using the OpenMP and Boost libraries for its parallel programming operations
and hashing procedures, respectively [18, 19]. It features a complete, highly mod-
ular pipeline from data input and parsing, over cluster extraction, to result visu-
alization and database storage. We implemented threaded parsers for a number
of file formats, including FASTA, FASTQ, and RAW sequence files, both for
paired-end and single-end sequencing data as well as automatic multiplexing
procedures for separating the individual SELEX rounds when sequenced to-
gether. Depending on the number of available CPUs, clustering and distance
calculations are performed in parallel for each pool. Cluster families and their
evolution from cycle to cycle are currently visualized in HTML format. Finally,
the algorithms behavior can be controlled using a configuration file allowing for
the assignment of most parameters used for parsing and clustering, among oth-
ers. We have empirically determined a set of default values, of which the most
relevant are discussed below.

5.3 Parameters

For the experiments described in this paper, we performed a total of r = 10
iterations of LSH sampling 60% of the randomized region (i.e. l = 24). The
parameter d = 4 is set in terms of the maximal number of point mutations any
pair of sequences should have and is converted into the k-mer distance cutoff by
sampling a user defined number of aptamers from the pool (10000 by default),
artificially mutating that sequence up to d times, and averaging over all dkmer



between these mutants and the wild-type. Furthermore we set k = 3 for the
computation of dkmer which has shown to give reasonable results for aptamer-
sized sequences.

5.4 HT-SELEX Experiment

Selection Details. A DNA template for the selection library was ordered from
IDT (Coralville, IA). 1 nM of each N40 template (5-TCTCGATCTCAGCGAGTCGTCG

-N40-CCCATCCCTCTTCCTCTCTCCC-3) and 5 primer (5-GGGGGAATTCTAATACGACTC
ACTATAGGGAGAGAGGAAGAGGGATGGG-3) were annealed together, extended with Taq
polymerase (Life Science), and transcribed in vitro using Durascribe (in-vitro
transcription) IVT kit (Illumina). The random R0 RNA was purified by dena-
turing PAGE and, after preclearing with human IgG-coated (Sigma) beads (GE
Healthcare), used for in-vitro selection. 1 nM of R0 RNA was used in a first round
of selection to coincubate with 0.3 nM of bead-bound human IL-10RA-Fc fusion
protein (Novus Biologicals) in 100 mM NaCl selection buffer. After washes, a re-
covered bound RNA fraction was reverse transcribed using the cloned AMV RT
kit (Life Science). cDNA was amplified by either emulsion or open PCR using
Platinum Taq PCR kit (Life Science) as described below. The DNA template
was used to IVT RNA for the next round. During subsequent rounds, amount of
protein was reduced 25% each time, while concentration of NaCl was gradually
increased to 150 mM.

Emulsion PCR. cDNA was amplified using Platinum Taq PCR kit with addi-
tion of 10% PCRx enhancer solution and following primers: 5-GGGGGAATTCTAAT
ACGACTCACTATAGGGAGAGAGGAAGAGGGATGGG-3 and 5-TCTCGATCTCAGCGAGTCGTCG-

3. After preparing the master mix PCR reaction solution, it was separated to
100 µL aliquots and each aliquot was mixed with 600 µL ice-cold oil fraction
assembled from components supplied with emulsion PCR kit (EURx) according
to manufacturers instructions. Water and oil mixture was emulsified by 5 vor-
texing at +4C and amplified in standard PCR machine for 25 cycles. Control
open PCR reaction was carried with aqueous phase only for 16 cycles.

Preparing Libraries for HTS. After 4 rounds of selection, 3 nM of RNA
was prepared for round 5. The RNA was pre-cleared using IgG-coated beads
and separated into three identical aliquots. Each aliquot was incubated with
either human IL10RA protein, murine IL10RA protein or human IgG. After
standard washes, bound RNA fraction was extracted from beads and reverse
transcribed as described previously. A cDNA generated from round 5 bound
fractions, as well as RNA recovered from bound fractions at rounds 2, 3 and 4,
was amplified by emulsion PCR with two sets of primers as described previously
[2]. Amplified DNA was purified by 2% agarose gel electrophoresis and sequenced
using Illuminas HiSeq 2500 device with 100-cycle paired-end sequencing protocol.
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Fig. 4. The frequency distribution of the members of the 5 largest clusters. The cluster
sizes are given in the brackets.

Table 1. Number of species with counts 1 to 5 present in the top 20 clusters of
selection round 5 compared to the frequency of their occurrence in selection round 2.
The overwhelming majority of the sequences are not present in the latter.

Nr. of aptamers with frequency
1 2 3 4 5

Top 20, cycle 5 8529 2202 1074 614 465
Found in cycle 2 61 36 27 18 16


